当前位置:首页 > 试题 > 数学试题

最新奥数试题解析

时间:2024-04-23 10:29:53
2017最新奥数试题解析

2017最新奥数试题解析

甲多开支100元,三年后负

债600元.求每人每年收入多少?

S的末四位数字的和是多少?

一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

求和

证明:质数p除以30所得的余数一定不是合数.

若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.

如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.

答案解析:

所以 x=5000(元).

所以S的末四位数字的`和为1+9+9+5=24.

因为

时,a-b0,即ab.即当b0或b0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则

由②有2x+y=20, ③

由①有y=12-x.将之代入③得

2x+12-x=20.

所以x=8(千米),于是y=4(千米).

5.第n项为

所以

设p=30q+r,030.因为p为质数,故r0,即0

由①式得(2p-1)(2q-1)=mpq,即

(4-m)pq+1=2(p+q).

可知m4.由①,m0,且为整数,所以m=1,2,3.下面分别研究p,q.

(1)若m=1时,有

解得p=1,q=1,与已知不符,舍去.

(2)若m=2时,有

因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.

(3)若m=3时,有

解之得

故 p+q=8.

8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.

9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以

上述两式相加

另一方面,

S△PCD=S△CND+S△CNP+S△DNP.

因此只需证明

S△AND=S△CNP+S△DNP.

由于M,N分别为AC,BD的中点,所以

S△CNP=S△CPM-S△CMN

=S△APM-S△AMN

=S△ANP.

又S△DNP=S△BNP,所以

S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.

奥数试题解析

甲多开支100元,三年后负

债600元.求每人每年收入多少?

S的末四位数字的和是多少?

一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

求和

证明:质数p除以30所得的余数一定不是合数.

若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.

如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.

答案解析:

所以 x=5000(元).

所以S的末四位数字的和为1+9+9+5=24.

因为

时,a-b0,即ab.即当b0或b0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则

由②有2x+y=20, ③

由①有y=12-x.将之代入③得

2x+12-x=20.

所以x=8(千米),于是y=4(千米).

5.第n项为

所以

设p=30q+r,030.因为p为质数,故r0,即0

由①式得(2p-1)(2q-1)=mpq,即

(4-m)pq+1=2(p+q).

可知m4.由①,m0,且为整数,所以m=1,2,3.下面分别研究p,q.

(1)若m=1时,有

解得p=1,q=1,与已知不符,舍去.

(2)若m=2时,有

因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.

(3)若m=3时,有

解之得

故 p+q=8.

8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.

9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以

上述两式相加

另一方面,

S△PCD=S△CND+S△CNP+S△DNP.

因此只需证明

S△AND=S△CNP+S△DNP.

由于M,N分别为AC,BD的中点,所以

S△CNP=S△CPM-S△CMN

=S△APM-S△AMN

=S△ANP.

又S△DNP=S△BNP,所以

S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.

《2017最新奥数试题解析.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式