高三物理教案
作为一名教师,时常需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么优秀的教案是什么样的呢?下面是小编精心整理的高三物理教案,欢迎阅读,希望大家能够喜欢。
高三物理教案11、知识与技能
(1)通过实验了解光电效应的实验规律。
(2)知道爱因斯坦光电效应方程以及意义。
(3)了解康普顿效应,了解光子的动量
2、过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
教学重点:光电效应的实验规律
教学难点:爱因斯坦光电效应方程以及意义
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备
(一)引入新课
回顾前面的学习,总结人类对光的本性的认识的发展过程?
(多媒体投影,见课件。)光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
(二)进行新课
1、光电效应
实验演示1:(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。上述实验说明了什么?(表明锌板在射线照射下失去电子而带正电)
概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。
2、光电效应的实验规律
(1)光电效应实验
如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。光电子在电场作用下形成光电流。
概念:遏止电压,将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。当K、A间加反向电压,光电子克服电场力作功,当电压达到某一值Uc时,光电流恰为0。Uc称遏止电压。
根据动能定理,有:
(2)光电效应实验规律
①光电流与光强的关系:饱和光电流强度与入射光强度成正比。
②截止频率νc----极限频率,对于每种金属材料,都相应的有一确定的截止频率νc,当入射光频率ν>νc时,电子才能逸出金属表面;当入射光频率ν
③光电效应是瞬时的。从光开始照射到光电子逸出所需时间<10-9s。
3、光电效应解释中的疑难
经典理论无法解释光电效应的实验结果。
经典理论认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。
光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。
光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。
为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。
4、爱因斯坦的光量子假设
(1)内容
光不仅在发射和吸收时以能量为hν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν的光是由大量能量为E=hν的光子组成的粒子流,这些光子沿光的传播方向以光速c运动。
(2)爱因斯坦光电效应方程
在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W0,另一部分变为光电子逸出后的动能Ek。由能量守恒可得出:
W0为电子逸出金属表面所需做的功,称为逸出功。Wk为光电子的最大初动能。
(3)爱因斯坦对光电效应的解释
①光强大,光子数多,释放的光电子也多,所以光电流也大。
②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。
③从方程可以看出光电子初动能和照射光的频率成线性关系
④从光电效应方程中,当初动能为零时,可得极限频率:
爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。
5、光电效应理论的验证
美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。
6、展示演示文稿资料:爱因斯坦和密立根
由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。
密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。
点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。
光电效应在近代技术中的应用
(1)光控继电器
可以用于自动控制,自动计数、自动报警、自动跟踪等。
(2)光电倍增管
可对微弱光线进行放大,可使光电流放大105~108倍,灵敏度高,用在工程、天文、科研、军事等方面。
高三物理教案2一、电流、电阻和电阻定律
1.电流:电荷的定向移动形成电流.
(1)形成电流的条件:内因是有自由移动的电荷,外因是导体两端有电势差.
(2)电流强度:通过导体横截面的电量Q与通过这些电量所用的时间t的比值。
①I=Q/t;假设导体单位体积内有n个电子,电子定向移动的速率为V,则I=neSv;假若导体单位长度有N个电子,则I=Nev.
②表示电流的强弱,是标量.但有方向,规定正电荷定向移动的方向为电流的方向.
③单位是:安、毫安、微安1A=103Ma=106A
2.电阻、电阻定律
(1)电阻:加在导体两端的电压与通过导体的电流强度的比值.R=U/I,导体的电阻 ……此处隐藏17555个字……p>
可见,教师与学生是组成教学的两个最基本的因素,教师在课堂上的各项活动少不了学生的配合;而学生在课堂上的各项活动也离不开教师的指导。所以,努力使师生之间的交流活动贯穿于整个教学过程之中,是发挥教师的主导作(20xx年小学语文四年级《触摸春天》教学反思案例)用的根本。
总之,物理教学应根据不同的教学资料、不同的学生实际、不同的实验条件,灵活而切合实际地选取不同的教法,用心探索和认真实践物理课堂教学的最优方法,深化物理课堂教学方法改革,努力提高物理教学质量。
高三物理教案13教学目标
1、知识与技能
(1)了解康普顿效应,了解光子的动量
(2)了解光既具有波动性,又具有粒子性;
(3)知道实物粒子和光子一样具有波粒二象性;
(4)了解光是一种概率波。
2、过程与方法:
(1)了解物理真知形成的历史过程;
(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;
(3)知道某一物质在不同环境下所表现的不同规律特性。
3、情感、态度与价值观:
领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
教学重点:
实物粒子和光子一样具有波粒二象性
教学难点:
实物粒子的波动性的理解。
教学方法:
教师启发、引导,学生讨论、交流。
教学用具:
投影片,多媒体辅助教学设备
(一)引入新课
提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。
我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?
(二)进行新课
1、康普顿效应
(1)光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。
(2)康普顿效应
1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。
(3)康普顿散射的实验装置与规律:
按经典电磁理论:如果入射X光是某种波长的电磁波,散射光的波长是不会改变的!散射中出现 的现象,称为康普顿散射。
康普顿散射曲线的特点:
① 除原波长 外出现了移向长波方向的新的散射波长
② 新波长 随散射角的增大而增大。波长的偏移为
波长的偏移只与散射角 有关,而与散射物质种类及入射的X射线的波长 无关,
= 0.0241=2.4110-3nm(实验值)
称为电子的Compton波长
只有当入射波长 与 可比拟时,康普顿效应才显著,因此要用X射线才能观察到康普顿散射,用可见光观察不到康普顿散射。
(4)经典电磁理论在解释康普顿效应时遇到的困难
①根据经典电磁波理论,当电磁波通过物质时,物质中带电粒子将作受迫振动,其频率等于入射光频率,所以它所发射的散射光频率应等于入射光频率。
②无法解释波长改变和散射角的关系。
(5)光子理论对康普顿效应的解释
①若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。
②若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。
③因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。
(6)康普顿散射实验的意义
①有力地支持了爱因斯坦光量子假设;
②首次在实验上证实了光子具有动量的假设;③证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。
2、光的波粒二象性
讲述光的波粒二象性,进行归纳整理。
(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。
(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。
3、光的波动性与粒子性是不同条件下的表现:
大量光子行为显示波动性;个别光子行为显示粒子性;光的波长越长,波动性越强;光的波长越短,粒子性越强。光的波动性不是光子之间相互作用引起的,是光子本身的一种属性。
例题:已知每秒从太阳射到地球上垂直于太阳光的每平方米截面上的辐射能为1.4103J,其中可见光部分约占45%,假设认为可见光的波长均为0.55m,太阳向各个方向的辐射是均匀的,日地之间距离为R=1.51011m,估算出太阳每秒辐射出的可见光的光子数。(保留两位有效数字)
高三物理教案14相对论指出,物体的能量(E)和质量(m)之间存在着密切的关系,即E=mc2式中,c为真空中的光速。爱因斯坦质能方程表明:物体所具有的能量跟它的质量成正比。由于c2这个数值十分巨大,因而物体的能量是十分可观的。
高三物理教案15物体贮藏着巨大的能量是不容置疑的,但是如何使这样巨大的能量释放出来?从爱因斯坦质能方程同样可以得出,物体的能量变化△E与物体的质量变化△m的关系:△E=Δmc2
单个的质子、中子的质量已经精确测定。用质谱仪或其他仪器测定某种原子核的质量,与同等数量的质子、中子的质量之和相比较,看一看两条途径得到的质量之差,就能推知原子核的结合能。
说明:
①物体的质量包括静止质量和运动质量,质量亏损指的是静止质量的减少,减少的静止质量转化为和辐射能量有关的运动质量。
②质量亏损并不是这部分质量消失或转变为能量,只是静止质量的减少。
③在核反应中仍然遵守质量守恒定律、能量守恒定律。
④质量只是物体具有能量多少及能量转变多少的一种量度。
阅读原子核的比结合能,指出中等大小的核的比结合能最大(平均每个核子的质量亏损最大),这些核最稳定。另一方面如果使较重的核分裂成中等大小的核,或者把较小的核合并成中等大小的核,核子的比结合能都会增加,这样可以释放能量供人使用。
巩固练习
已知:1个质子的质量mp=1.007277u,1个中子的质量mn=1.008665u.氦核的质量为4.001509u.这里u表示原子质量单位,1u=1.660566×10-27kg.由上述数值,计算2个质子和2个中子结合成氦核时释放的能量。(28.3MeV)